Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Insect Sci ; 49: 1-7, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34607082

RESUMO

Embryonic dorsal-ventral (DV) patterning by Bone Morphogenetic Proteins (BMPs) is a conserved feature of Bilateria, based on graded BMP activity set up by diffusible BMP ligands and Chordin/Sog antagonists. In the fly Drosophila melanogaster BMP function is secondary to patterning by the Toll pathway, suggesting a more restricted role for BMPs in insects. With widespread genome sequencing technologies allied to functional analysis in a growing number of species, recent work has shown that BMP's role in DV patterning relative to Toll varies among insect orders. Further, the role of BMP antagonists to set up BMP gradients is also greatly diversified. Here we review the recent findings concerning the role of BMP in the DV patterning of insects and address the potential aspects that may have co-evolved with BMPs to attain this functional divergence.


Assuntos
Padronização Corporal , Drosophila melanogaster , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Drosophila melanogaster/metabolismo , Insetos/genética , Insetos/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-30249692

RESUMO

The aim of this study was to evaluate the antifungal activity and the toxicity of ellagic acid (EA) using a Drosophila melanogaster model. Candida albicans bacteria were inoculated into Toll heterozygous flies. Survival curves were obtained for the evaluation of the antimicrobial effect and toxicity of EA. A protective effect of EA against fungal infection in Drosophila melanogaster was observed at nontoxic concentrations. This study showed that EA is a promising tool for the treatment of candidiasis.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Ácido Elágico/farmacologia , Receptores Toll-Like/imunologia , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase/tratamento farmacológico , Candidíase/imunologia , Candidíase/microbiologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Feminino , Expressão Gênica , Heterozigoto , Longevidade/imunologia , Receptores Toll-Like/genética
3.
Development ; 144(16): 2907-2913, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28705899

RESUMO

The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Fosfoproteínas/metabolismo , Alelos , Animais , Calpaína/genética , Calpaína/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Genesis ; 55(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28432816

RESUMO

The hemiptera Rhodnius prolixus is a blood-feeding insect and a primary vector of Trypanosoma cruzi, the etiological agent of the Chagas disease. Over the past century, Rhodnius has been the subject of intense investigations, which have contributed to unveil important aspects of metabolism and physiology in insects. Recent technological innovations are helping dissect the genetic and molecular underpinnings of Rhodnius embryogenesis and organogenesis, thus fostering the use of this important species in the fields of developmental and evolutionary biology. Rhodnius represents also an excellent system to study development under stressful conditions, since the embryo must develop in the presence of a large amount of blood-derived reactive oxygen species. With a recently sequenced genome, small among other Hemiptera, and the identification of basic elements for all classical development pathways, functional studies in this species are revealing novel aspects of insect development and evolution. Here we review early studies on this model insect and how this paved the way for recent functional studies using the kissing bug.


Assuntos
Insetos Vetores/crescimento & desenvolvimento , Rhodnius/crescimento & desenvolvimento , Animais , Desenvolvimento Embrionário , Evolução Molecular , Insetos Vetores/genética , Insetos Vetores/fisiologia , Rhodnius/genética , Rhodnius/fisiologia
5.
Genesis ; 51(12): 803-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24166799

RESUMO

Chelicerates, which include spiders, ticks, mites, scorpions, and horseshoe crabs, are members of the phylum Arthropoda. In recent years, several molecular experimental studies of chelicerates have examined the embryology of spiders; however, the embryology of other groups, such as ticks (Acari: Parasitiformes), has been largely neglected. Ticks and mites are believed to constitute a monophyletic group, the Acari. Due to their blood-sucking activities, ticks are also known to be vectors of several diseases. In this study, we analyzed the embryonic development of the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). First, we developed an embryonic staging system consisting of 14 embryonic stages. Second, histological analysis and antibody staining unexpectedly revealed the presence of a population of tick cells with similar characteristics to the spider cumulus. Cumulus cell populations also exist in other chelicerates; these cells are responsible for the breaking of radial symmetry through bone morphogenetic protein signaling. Third, it was determined that the posterior (opisthosomal) embryonic region of R. microplus is segmented. Finally, we identified the presence of a transient ventral midline furrow and the formation and regression of a fourth leg pair; these features may be regarded as hallmarks of late tick embryogenesis. Importantly, most of the aforementioned features are absent from mite embryos, suggesting that mites and ticks do not constitute a monophyletic group or that mites have lost these features. Taken together, our findings provide fundamental common ground for improving knowledge regarding tick embryonic development, thereby facilitating the establishment of a new chelicerate model system.


Assuntos
Rhipicephalus/embriologia , Animais , Evolução Biológica , Bovinos , Células do Cúmulo/citologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Feminino , Modelos Animais , Filogenia , Rhipicephalus/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...